Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 13(1): e0098523, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38112477

RESUMO

We report the sequence of the complete genome and associated plasmids of two Lactiplantibacillus plantarum isolates from the traditional Mexican pulque beverage assembled with a combination of PacBio and Illumina data. The resulting complete genome for strain LB1_P46 is 3,287,706 bp; for strain LB2_P47, the complete genome is 3,289,072 bp.

2.
Braz J Microbiol ; 53(2): 921-933, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35094300

RESUMO

The objective of this work was to determine in vitro probiotic activity traits of 11 lactic acid bacteria (LAB) strains isolated from pulque obtained from three different locations in the Mexican states of Oaxaca and Puebla using the probiotic strain Lactobacillus acidophilus NCFM as a positive control, and to detect their production of antimicrobial peptides, including bacteriocins and peptidoglycan hydrolases (PGH). The LAB isolates were identified by sequencing of their 16S rRNA as belonging to four different genera of the Lactobacillaceae family: Lactiplantibacillus, Levilactobacillus, Lacticaseibacillus and Liquorilactobacillus, corresponding to the species plantarum, brevis, paracasei and ghanensis, respectively. Most of the strains showed resistance to high acidity (pH 2) and bile salts (0.5%), with survival rates up to 87 and 92%, respectively. In addition, most of the strains presented good antimicrobial activity against the foodborne pathogens Listeria monocytogenes, ECEC and Salmonella Typhi. The strain Liquorilactobacillus ghanensis RVG6, newly reported in pulque, presented an outstanding overall performance on the probiotic activity tests. In terms of their probiotic activity traits assessed in this work, the strains compared positively with the control L. acidophilus NCFM, which is a very-well documented probiotic strain. For the antimicrobial peptide studies, four strains presented bacteriocin-like mediated antibiosis and six had significant PGH activity, with two strains presenting outstanding overall antimicrobial peptide production: Lacticaseibacillus paracasei RVG3 and Levilactobacillus brevis UTMB2. The probiotic performance of the isolates was mainly dependent on strain specificity. The results obtained in this work can foster the revalorization of pulque as a functional natural product.


Assuntos
Bacteriocinas , Lactobacillales , Levilactobacillus brevis , Probióticos , Peptídeos Antimicrobianos , Bacteriocinas/genética , Bacteriocinas/farmacologia , Bebidas Fermentadas , Lactobacillaceae/genética , Lactobacillus acidophilus/genética , Levilactobacillus brevis/genética , RNA Ribossômico 16S/genética
3.
Sci Rep ; 10(1): 15115, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934253

RESUMO

Pulque is a culturally important 4,000-year-old traditional Mexican fermented drink. Pulque is produced by adding fresh aguamiel (agave sap) to mature pulque, resulting in a mixture of microbial communities and chemical compositions. We performed shotgun metagenomic sequencing of five stages of pulque fermentation to characterize organismal and functional diversity. We identified 6 genera (Acinetobacter, Lactobacillus, Lactococcus, Leuconostoc, Saccharomyces and Zymomonas) and 10 species (Acinetobacter boissieri, Acinetobacter nectaris, Lactobacillus sanfranciscensis, Lactococcus lactis, Lactococcus piscium, Lactococcus plantarum, Leuconostoc citreum, Leuconostoc gelidum, Zymomonas mobilis and Saccharomyces cerevisiae) that were present ≥ 1% in at least one stage of pulque fermentation. The abundance of genera and species changed during fermentation and was associated with a decrease in sucrose and increases in ethanol and lactic acid, suggesting that resource competition shapes organismal diversity. We also predicted functional profiles, based on organismal gene content, for each fermentation stage and identified an abundance of genes associated with the biosynthesis of folate, an essential B-vitamin. Additionally, we investigated the evolutionary relationships of S. cerevisiae and Z. mobilis, two of the major microbial species found in pulque. For S. cerevisiae, we used a metagenomics assembly approach to identify S. cerevisiae scaffolds from pulque, and performed phylogenetic analysis of these sequences along with a collection of 158 S. cerevisiae strains. This analysis suggests that S. cerevisiae from pulque is most closely related to Asian strains isolated from sake and bioethanol. Lastly, we isolated and sequenced the whole-genomes of three strains of Z. mobilis from pulque and compared their relationship to seven previously sequenced isolates. Our results suggest pulque strains may represent a distinct lineage of Z. mobilis.


Assuntos
Agave/microbiologia , Bebidas Alcoólicas/microbiologia , Bactérias/genética , DNA Bacteriano/análise , DNA Fúngico/análise , Fungos/genética , Metagenoma , Bactérias/classificação , Bactérias/metabolismo , Fermentação , Fungos/classificação , Fungos/metabolismo
4.
Springerplus ; 5(1): 708, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375977

RESUMO

Pulque is a Mexican traditional alcoholic, non-distilled, fermented beverage produced by the fermentation of the sap, known as aguamiel, extracted from several maguey (Agave) species. Pulque has traditionally been considered a healthy beverage due to its nutrient content and also a traditional medicine for the treatment of gastrointestinal disorders and intestinal infections. During pulque fermentation, the development of acidity, alcohol and viscosity define its final sensorial properties, developing an enriched environment where dominant lactic acid bacteria (LAB), including diverse Leuconostoc species, are present. Because traditional pulque is consumed directly from the fermentation vessel, the naturally associated LAB are ingested and reach the human small intestine alive. Here, we report the in vitro and in vivo probiotic assessment of Leuconostoc mesenteroides strain P45 isolated from pulque. This isolated LAB species exhibited lysozyme, acid (pH 3.5) and bile salts (0.1 and 0.3 % oxgall) resistance. Antibacterial activity against the pathogens Listeria monocytogenes, enteropathogenic Escherichia coli, Salmonella enterica serovar Typhi and S. enterica serovar Typhimurium were observed in assays involving cell-to-cell contact, cell-free 2× concentrated supernatants and cell-to-cell contact under exopolysaccharide-producing conditions. The in vivo probiotic assessment showed an anti-infective activity of L. mesenteroides P45 against S. enterica serovar Typhimurium in challenged male and female BALB/c mice. Analysis of the available genome sequence of strain P45 allowed identified a pre-bacteriocin coding gene and six peptidoglycan hydrolase enzymes, probably involved in the antimicrobial activity of this strain. The results presented in this study support some potential microbial mechanisms associated with the beneficial effects on human health of this LAB involved in the fermentation of pulque.

5.
Front Microbiol ; 7: 1026, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446061

RESUMO

Pulque is a traditional Mexican alcoholic beverage produced from the fermentation of the fresh sap known as aguamiel (mead) extracted from several species of Agave (maguey) plants that grow in the Central Mexico plateau. Currently, pulque is produced, sold and consumed in popular districts of Mexico City and rural areas. The fermented product is a milky white, viscous, and slightly acidic liquid beverage with an alcohol content between 4 and 7° GL and history of consumption that dates back to pre-Hispanic times. In this contribution, we review the traditional pulque production process, including the microbiota involved in the biochemical changes that take place during aguamiel fermentation. We discuss the historical relevance and the benefits of pulque consumption, its chemical and nutritional properties, including the health benefits associated with diverse lactic acid bacteria with probiotic potential isolated from the beverage. Finally, we describe the actual status of pulque production as well as the social, scientific and technological challenges faced to preserve and improve the production of this ancestral beverage and Mexican cultural heritage.

6.
Genome Announc ; 2(6)2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25377708

RESUMO

Leuconostoc mesenteroides P45 was isolated from the traditional Mexican pulque beverage. We report its draft genome sequence, assembled in 6 contigs consisting of 1,874,188 bp and no plasmids. Genome annotation predicted a total of 1,800 genes, 1,687 coding sequences, 52 pseudogenes, 9 rRNAs, 51 tRNAs, 1 noncoding RNA, and 44 frameshifted genes.

7.
Springerplus ; 3: 583, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25332883

RESUMO

We report the screening and characterization of EPS produced by LAB identified as Leuconostoc kimchii isolated from pulque, a traditional Mexican fermented, non-distilled alcoholic beverage produced by the fermentation of the sap extracted from several (Agave) maguey species. EPS-producing LAB constitutes an abundant bacterial group relative to total LAB present in sap and during fermentation, however, only two EPS-producing colony phenotypes (EPSA and EPSB, respectively) were detected and isolated concluding that despite the high number of polymer-producing LAB their phenotypic diversity is low. Scanning electron microcopy analysis during EPS-producing conditions revealed that both types of EPS form a uniform porous structure surrounding the bacterial cells. The structural characterization of the soluble and cell-associated EPS fractions of each polymer by enzymatic and acid hydrolysis, as by 1D- and 2D-NMR, showed that polymers produced by the soluble and cell-associated fractions of EPSA strain are dextrans consisting of a linear backbone of linked α-(1→6) Glcp in the main chain with α-(1→2) and α-(1→3)-linked branches. The polymer produced by the soluble fraction of EPSB strain was identified as a class 1 dextran with a linear backbone containing consecutive α-(1→6)-linked D-glucopyranosyl units with few α-(1→3)-linked branches, whereas the cell-associated EPS is a polymer mixture consisting of a levan composed of linear chains of (2→6)-linked ß-D-fructofuranosyl residues with ß-(2→6) connections, and a class 1 dextran. According to our knowledge this is the first report of dextrans and a levan including their structural characterization produced by L. kimchii isolated from a traditional fermented source.

8.
Antonie Van Leeuwenhoek ; 105(4): 687-96, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24500003

RESUMO

The biosynthesis of poly-3-hydroxybutyrate (P3HB), a biodegradable bio-plastic, requires acetyl-CoA as precursor and NADPH as cofactor. Escherichia coli has been used as a heterologous production model for P3HB, but metabolic pathway analysis shows a deficiency in maintaining high levels of NADPH and that the acetyl-CoA is mainly converted to acetic acid by native pathways. In this work the pool of NADPH was increased 1.7-fold in E. coli MG1655 through plasmid overexpression of the NADP(+)-dependent glyceraldehyde 3-phosphate dehydrogenase gene (gapN) from Streptococcus mutans (pTrcgapN). Additionally, by deleting the main acetate production pathway (ackA-pta), the acetic acid production was abolished, thus increasing the acetyl-CoA pool. The P3HB biosynthetic pathway was heterologously expressed in strain MG1655 Δack-pta/pTrcgapN, using an IPTG inducible vector with the P3HB operon from Azotobacter vinelandii (pPHB Av ). Cultures were performed in controlled fermentors using mineral medium with glucose as the carbon source. Accordingly, the mass yield of P3HB on glucose increased to 73 % of the maximum theoretical and was 30 % higher when compared to the progenitor strain (MG1655/pPHB Av ). In comparison with the wild type strain expressing pPHB Av , the specific accumulation of PHB (gPHB/gDCW) in MG1655 Δack-pta/pTrcgapN/pPHB Av increased twofold, indicating that as the availability of NADPH is raised and the production of acetate abolished, a P3HB intracellular accumulation of up to 84 % of the E. coli dry weight is attainable.


Assuntos
Acetilcoenzima A/metabolismo , Vias Biossintéticas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Hidroxibutiratos/metabolismo , Engenharia Metabólica , NADP/metabolismo , Poliésteres/metabolismo , Azotobacter vinelandii/enzimologia , Azotobacter vinelandii/genética , Reatores Biológicos/microbiologia , Meios de Cultura/química , Escherichia coli/enzimologia , Deleção de Genes , Gliceraldeído 3-Fosfato Desidrogenase (NADP+)/genética , Gliceraldeído 3-Fosfato Desidrogenase (NADP+)/metabolismo , Plasmídeos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptococcus mutans/enzimologia , Streptococcus mutans/genética
9.
Int J Food Microbiol ; 124(2): 126-34, 2008 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-18450312

RESUMO

In this study, the characterization of the bacterial community present during the fermentation of pulque, a traditional Mexican alcoholic beverage from maguey (Agave), was determined for the first time by a polyphasic approach in which both culture and non-culture dependent methods were utilized. The work included the isolation of lactic acid bacteria (LAB), aerobic mesophiles, and 16S rDNA clone libraries from total DNA extracted from the maguey sap (aguamiel) used as substrate, after inoculation with a sample of previously produced pulque and followed by 6-h fermentation. Microbiological diversity results were correlated with fermentation process parameters such as sucrose, glucose, fructose and fermentation product concentrations. In addition, medium rheological behavior analysis and scanning electron microscopy in aguamiel and during pulque fermentation were also performed. Our results showed that both culture and non-culture dependent approaches allowed the detection of several new and previously reported species within the alpha-, gamma-Proteobacteria and Firmicutes. Bacteria diversity in aguamiel was composed by the heterofermentative Leuconostoc citreum, L. mesenteroides, L. kimchi, the gamma-Proteobacteria Erwinia rhapontici, Enterobacter spp. and Acinetobacter radioresistens. Inoculation with previously fermented pulque incorporated to the system microbiota, homofermentative lactobacilli related to Lactobacillus acidophilus, several alpha-Proteobacteria such as Zymomonas mobilis and Acetobacter malorum, other gamma-Proteobacteria and an important amount of yeasts, creating a starting metabolic diversity composed by homofermentative and heterofermentative LAB, acetic and ethanol producing microorganisms. At the end of the fermentation process, the bacterial diversity was mainly composed by the homofermentative Lactobacillus acidophilus, the heterofermentative L. mesenteroides, Lactococcus lactis subsp. lactis and the alpha-Proteobacteria A. malorum. After a 6-h fermentation, 83.27% of total sugars detected after inoculation were consumed (228.4 mM hexose equivalents) and a carbon (C) recovery of 66.18% in fermentation products was estimated. They were produced 284.4 mM C as ethanol, 71.5 mM C as acetic acid and 19 mM C as lactic acid, demonstrating the presence of homo- and heterofermentative, acetic and alcoholic metabolisms in the final product. It was also found, after hydrolysis, that the exopolysaccharide produced during the fermentation was mainly composed by fructose residues, probably inulin or levan.


Assuntos
Agave/microbiologia , Bebidas Alcoólicas/microbiologia , Bactérias/classificação , DNA Bacteriano/análise , RNA Ribossômico 16S/genética , Bactérias/isolamento & purificação , Clonagem Molecular , DNA Ribossômico/análise , Ecossistema , Fermentação , México , Filogenia , Mapeamento por Restrição , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...